Two Kinds of Congruence Networks on Regular Semigroups

Ying-Ying Feng

¹ Foshan University, Guangdong, P. R. China ² University of York, York, UK

York Semigroup, York, Apr 20, 2016

1 Notation & terminology

2 \mathcal{TK} -network on inverse semigroups

 $a \in S$ is regular ---- $(\exists x \in S) axa = a$

- regular semigroups
 - all elements are regular
- inverse semigroup
 - a regular semigroup whose idempotents commute
- congruence

- compatible equivalence relation, i.e.

 $(\forall s, t, s', t' \in S) \ [(s, t) \in \rho \text{ and } (s', t') \in \rho] \Rightarrow (ss', tt') \in \rho$

• *P*-type congruence

— S/ρ is a \mathcal{P} -type semigroup

• kernel-trace approach

Let ρ be a congruence on S, tr $\rho = \rho|_{E(S)}$, Ker $\rho = \{x \in S \mid (\exists e \in E(S)) \times \rho e\}$.

• inverse semigroup

1974, Scheiblich $\rho = \rho_{(tr \, \rho, Ker \, \rho)}$ 1978, Petrich congruence pair

Definition

The pair (K, τ) is a *congruence pair* for *S* if *K* is a normal subsemigroup of *S*, τ is a normal congruence on E(S), and these two satisfy:

(i)
$$ae \in K$$
, $e \tau a^{-1}a \Rightarrow a \in K$ $(a \in S, e \in E(S))$;
(ii) $k \in K \Rightarrow kk^{-1}\tau k^{-1}k$.

In such a case, define a relation $\rho_{(K,\tau)}$ on S by

$$a \rho_{(K,\tau)} b \iff a^{-1} a \tau b^{-1} b, a b^{-1} \in K.$$

Theorem

Let S be an inverse semigroup. If (K, τ) is a congruence pair for S, then $\rho_{(K,\tau)}$ is the unique congruence ρ on S for which Ker $\rho = K$ and tr $\rho = \tau$. Conversely, if ρ is a congruence on S, then (Ker ρ , tr ρ) is a congruence pair for S and $\rho_{(K,\tau)} = \rho$.

Inverse semigroup		Regular semigroup
1974, Scheiblich	$\rho = \rho_{(\operatorname{tr}\rho,\operatorname{Ker}\rho)}$	1979, Feigenbaum
1978, Petrich	congruence pair	1986, Pastijn – Petrich

Definition

A pair (K, τ) is a *congruence pair* for S if (i) K is a normal subset of S, (ii) τ is a normal equivalence on E(S), (iii) $K \subseteq \text{Ker} (\mathcal{L}\tau\mathcal{L}\tau\mathcal{L}\cap\mathcal{R}\tau\mathcal{R}\tau\mathcal{R})^{\flat}$, (iv) $\tau \subseteq \text{tr }\pi_{K}$. In such a case, we define $\rho_{(K,\tau)} = \pi_{K} \cap (\mathcal{L}\tau\mathcal{L}\tau\mathcal{L}\cap\mathcal{R}\tau\mathcal{R}\tau\mathcal{R})^{\flat}$.

Theorem

Let S be a regular semigroup. If (K, τ) is a congruence pair for S, then $\rho_{(K,\tau)}$ is the unique congruence ρ on S for which Ker $\rho = K$ and tr $\rho = \tau$. Conversely, if ρ is a congruence on S, then (Ker ρ , tr ρ) is a congruence pair for S and $\rho = \rho_{(K,\tau)}$.

Congruence triple

Definition

A triple (γ, K, δ) consisting of normal equivalences $\gamma \in \mathcal{E}(S/\mathcal{L})$ and $\delta \in \mathcal{E}(S/\mathcal{R})$ and a normal subset $K \subseteq S$, is a *congruence triple* if (i) $\overline{\gamma} = (\overline{\gamma} \cap \overline{\delta})^{\flat} \lor \mathcal{L}, \ \overline{\delta} = (\overline{\gamma} \cap \overline{\delta})^{\flat} \lor \mathcal{R};$ (ii) $K \subseteq \operatorname{Ker} \overline{\gamma}^{\flat}, \ \overline{\gamma} \subseteq \theta_{K}^{\flat} \lor \mathcal{L};$ (iii) $K \subseteq \operatorname{Ker} \overline{\delta}^{\flat}, \ \overline{\delta} \subseteq \theta_{K}^{\flat} \lor \mathcal{R}.$ If this is the case, we define $\rho_{(\gamma,K,\delta)} = (\overline{\gamma} \cap \theta_{K} \cap \overline{\delta})^{\flat}.$

Theorem

Let S be a regular semigroup. If (γ, K, δ) is a congruence triple for S, then $\rho_{(\gamma,K,\delta)}$ is the unique congruence ρ on S such that γ is the \mathcal{L} -part of ρ , $K = \text{Ker } \rho$ and δ is the \mathcal{R} -part of ρ . Conversely, if ρ is a congruence on S, then $(\gamma, K, \delta) = ((\rho \lor \mathcal{L})/\mathcal{L}, \text{Ker } \rho, (\rho \lor \mathcal{R})/\mathcal{R})$ is a congruence triple for S and $\rho = \rho_{(\gamma,K,\delta)}$. kernel-trace approach

Let ρ be a congruence on S,

 $\operatorname{tr} \rho = \rho|_{E(S)}, \qquad \operatorname{Ker} \rho = \{ x \in S \mid (\exists e \in E(S)) \times \rho \, e \}.$ $\rho = \rho_{(\operatorname{tr} \rho, \operatorname{Ker} \rho)}.$

• \mathcal{T} , \mathcal{K} -relation

Let $\rho, \theta \in \mathcal{C}(S)$, $\rho \mathcal{T} \theta \iff \operatorname{tr} \rho = \operatorname{tr} \theta$, $\rho \mathcal{K} \theta \iff \operatorname{Ker} \rho = \operatorname{Ker} \theta$, $\rho \mathcal{U} \theta \iff \rho \cap \leq = \theta \cap \leq$, $\rho \mathcal{V} \theta \iff \rho \mathcal{U} \theta$ and $\rho \mathcal{K} \theta$, where \leq is the natural partial order on E(S).

•
$$\mathcal{T} \cap \mathcal{K} = \varepsilon_{\mathcal{C}(S)} = \mathcal{T} \cap \mathcal{V}$$

Definition

A triple (γ, π, δ) consisting of normal equivalences $\gamma \in \mathcal{E}(S/\mathcal{L})$ and $\delta \in \mathcal{E}(S/\mathcal{R})$ and a \mathcal{V} -normal congruence π on S, is a \mathcal{VT} -congruence triple if (i) $\overline{\gamma} = (\overline{\gamma} \cap \overline{\delta})^{\flat} \vee \mathcal{L}, \ \overline{\delta} = (\overline{\gamma} \cap \overline{\delta})^{\flat} \vee \mathcal{R};$ (ii) $\pi \subseteq (\overline{\gamma}^{\flat})^{V}, \ \overline{\gamma} \subseteq \pi \vee \mathcal{L};$ (iii) $\pi \subseteq (\overline{\delta}^{\flat})^{V}, \ \overline{\delta} \subseteq \pi \vee \mathcal{R}.$

If this is the case, we define

$$\rho_{(\gamma,\pi,\delta)} = (\overline{\gamma} \cap \pi \cap \overline{\delta})^{\flat}.$$

Theorem

Let S be a regular semigroup. If (γ, π, δ) is a \mathcal{VT} -congruence triple for S, then $\rho_{(\gamma,\pi,\delta)}$ is the unique congruence ρ on S such that γ is the \mathcal{L} -part of ρ , π is the \mathcal{V} -part of ρ and δ is the \mathcal{R} -part of ρ . Conversely, if ρ is a congruence on S, then $(\gamma, \pi, \delta) = ((\rho \lor \mathcal{L})/\mathcal{L}, \overline{\mathcal{V}_{S/\rho}}^{\flat}, (\rho \lor \mathcal{R})/\mathcal{R})$ is a congruence triple for S and $\rho = \rho_{(\gamma,\pi,\delta)}$.

•
$$\rho T \theta \iff \operatorname{tr} \rho = \operatorname{tr} \theta, \qquad \rho \mathcal{K} \theta \iff \operatorname{Ker} \rho = \operatorname{Ker} \theta,$$

 $\rho \mathcal{U} \theta \iff \rho \cap \leq = \theta \cap \leq, \qquad \mathcal{V} = \mathcal{U} \cap \mathcal{K}.$

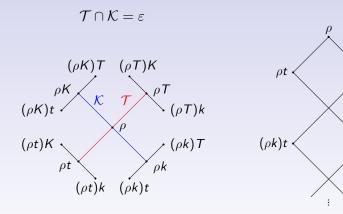
Result

For any $\rho \in \mathcal{C}(S)$, $\rho \mathcal{T} = [\rho t, \rho T]$, $\rho \mathcal{K} = [\rho k, \rho K]$, $\rho \mathcal{U} = [\rho u, \rho U]$, $\rho \mathcal{V} = [\rho v, \rho V]$, where $\rho t = (\operatorname{tr} \rho)^{\sharp}$, $\rho T = \overline{\mathcal{H}_{S/\rho}}^{\flat}$, $\rho k = \{(x, x^2) \in S \times S \mid x \in \operatorname{Ker} \rho\}^{\sharp}$, $\rho \mathcal{K} = \theta_{\operatorname{Ker} \rho}^{\flat}$, $\rho u = (\rho \cap \leq)^{\sharp}$, $\rho \mathcal{U} = \overline{\mathscr{U}_{S/\rho}}^{\flat}$, $\rho v = \rho_U \vee \rho_K$, $\rho \mathcal{V} = \rho \mathcal{U} \cap \rho \mathcal{K} = \overline{\mathscr{V}_{S/\rho}}^{\flat}$.

- kernel-trace approach
- \mathcal{T} , \mathcal{K} -relation
- congruence networks
 - single out various classes of semigroups of particular interest
 - structure

Congruence network

 \mathcal{TK} -network of ρ

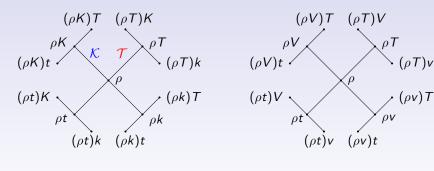


 $\mathcal{TK} ext{-min}$ network of ho

 $\rho \mathbf{k}$

 $(\rho t)k$

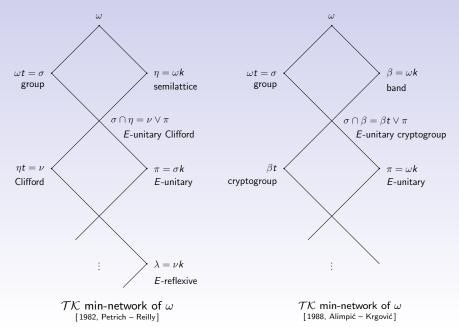
Congruence network



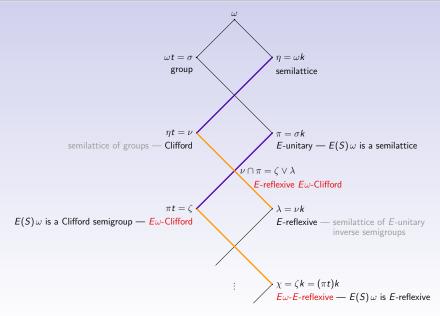
 $\mathcal{TV}\text{-network}$ of ρ

Inverse semigroup

Regular semigroup



\mathcal{TK} -network on inverse semigroup



 \mathcal{TK} min-network of ω

E ω -Clifford semigroup and *E* ω -*E*-reflexive semigroup

Proposition

The following conditions on an inverse semigroup S are equivalent.

- (1) S is an $E\omega$ -Clifford semigroup;
- (2) $\sigma \cap \mathcal{L}$ is a congruence;
- (3) $\sigma \cap \mathcal{R}$ is a congruence;
- (4) $\sigma \cap \mathcal{L} = \sigma \cap \mathcal{R};$
- (5) $\sigma \cap \mathcal{L} = \sigma \cap \mu$;
- (6) there exists an idempotent

separating E-unitary congruence on S;

- (7) $\pi \subseteq \mu$;
- (8) $\pi t = \varepsilon$;

(9) $e\sigma$ is a Clifford semigroup for every $e \in E(S)$,;

(10) S satisfies the implication

 $xy = x \Rightarrow y \in E(S) \zeta;$ (11) $E(S) \omega \subseteq E(S) \zeta;$ (12) $\pi \cap \mathcal{F} = \varepsilon.$

Theorem

The following conditions on an inverse semigroup S are equivalent. (1) S is $E\omega$ -E-reflexive; (2) $\pi \cap \mathcal{F}$ is a congruence; (3) $\pi \cap C$ is a congruence; (4) $\pi \cap \mathcal{F} = \pi \cap \tau$; (5) $\pi \cap \mathcal{C} = \pi \cap \tau$; (6) there exists an idempotent pure $E\omega$ -Clifford congruence on S; (7) $\zeta \subset \tau$; (8) $\zeta k = \varepsilon$; (9) $e\pi$ is *E*-unitary for every $e \in E(S);$ (10) S satisfies the implication $xy = x, x \pi y \Rightarrow y \in E(S);$ (11) $\zeta \cap \mathcal{L} = \varepsilon$.

Proposition

The following statements concerning a congruence ρ on an inverse semigroup S are equivalent. (1) ρ is an E ω -Clifford congruence; (2) $\pi_{\rho} \subseteq \rho T$, where π_{ρ} is the least E-unitary congruence on S containing ρ ; (3) tr $\pi_{\rho} = \text{tr } \rho$.

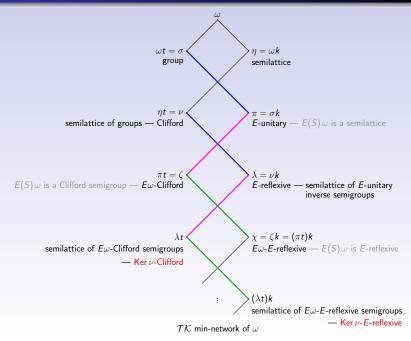
Proposition

The following statements concerning a congruence ρ on an inverse semigroup S are equivalent. (1) ρ is $E\omega$ -E-reflexive; (2) $\zeta_{\rho} \subseteq \rho K$, where ζ_{ρ} is the least $E\omega$ -Clifford congruence on S containing ρ ; (3) Ker $\zeta_{\rho} = \text{Ker } \rho$.

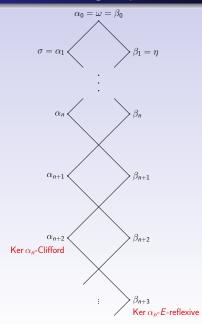
Petrich, Inverse Semigroups, Table III.8.10

	ω	σ	η	ν	π	λ	ζ	χ	μ	τ
σ	$E\omega = S$									
η	no c. pr. ideals	$E\omega = S$, no c. pr. ide- als								
ν	$\sigma = $ $\eta = $ ω	no c. pr. ideals	$E_A \omega = A \ (\forall \eta - cl. A)$							
π	$\sigma = $ $\eta = $ ω	$\operatorname{tr} \pi = \omega$	$egin{array}{cc} E\omega &= \ S \end{array}$							
λ	$\sigma = $ $\eta = $ ω	$\operatorname{tr} \pi = \omega$	$E_A \omega = \\ A (\forall \eta - \\ cl. A)$							
ς	$\sigma = $ $\eta = $ ω	$\operatorname{tr} \pi = \omega$	$E_A \omega = \\ A \ (\forall \ \eta - \\ cl. \ A)$							
x	$\sigma = \eta = \omega$	$\operatorname{tr} \pi = \omega$	$E_A \omega = \\ A \ (\forall \ \eta - \\ cl. \ A)$							
μ	group	trivial	Clifford	semil.	$E\omega = E\zeta$ and tr $\pi = \varepsilon$					
τ	semil.	E-un.	trivial	E-refl. tr π = tr η	E-un. E-disj.	$\begin{array}{l} {\it E}\text{-refl.}\\ {\rm tr}\tau \ =\\ {\rm tr}\lambda \end{array}$	$E\omega$ - E-refl. tr τ = tr π	E-disj. Eω-E- refl.	E-disj. antig.	
ε	trivial	group	semil.	Clifford	E-un.	E-refl.	$E\omega$ - Clifford	$E\omega$ - E - refl.	antig.	E-disj.

Question



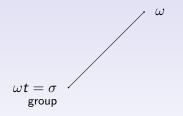
\mathcal{TK} -network on inverse semigroup



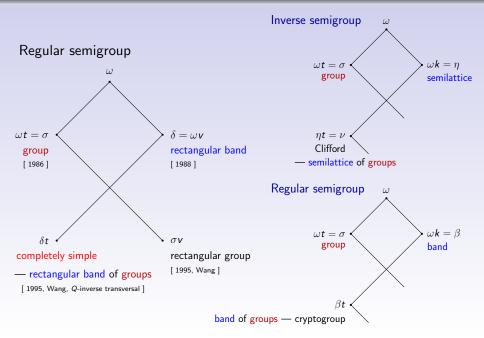
 \mathcal{TK} min-network of ω

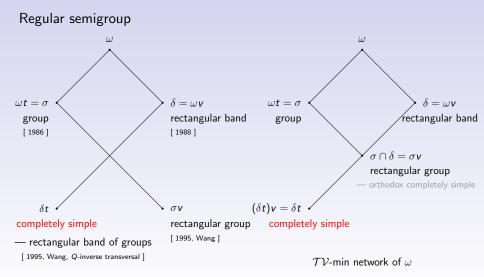
$$\begin{split} \rho \, \mathcal{K} \, \theta & \Longleftrightarrow \quad \text{Ker} \, \rho = \text{Ker} \, \theta \\ \rho \, \mathcal{U} \, \theta & \Longleftrightarrow \quad \rho \cap \leq = \theta \cap \leq \\ \mathcal{V} = \mathcal{U} \cap \mathcal{K} \end{split}$$

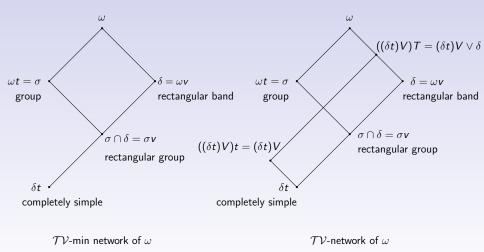
Inverse semigroup $\mathcal{V} = \varepsilon$



 $\mathcal{TV}\text{-network}$ of ω







\mathcal{TV} -network of arepsilon

Theorem

For a congruence ρ on a regular semigroup S.

(1) ρt is over bands $\iff \rho t = \rho \cap \tau \Longrightarrow \rho$ is over *E*-unitary semigroups;

(2) ρt is over rectangular bands $\iff \rho t = \rho \cap \varepsilon V \Longrightarrow \rho$ is over rectangular groups;

(3) ρv is over groups $\iff \rho v = \rho \cap \mu \Longrightarrow \rho$ is over completely simple semigroups;

(4) ρk is over groups $\iff \rho k = \rho \cap \mu \Longrightarrow \rho$ is over cryptogroups.

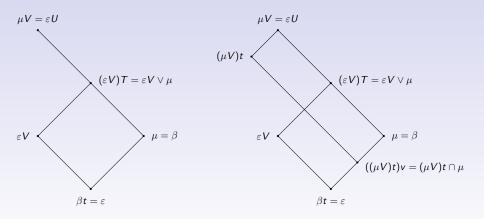
Corollary

On a regular semigroup S, the following statements hold.

- (1) τT is over E-unitary semigroups;
- (2) $(\varepsilon V)T$ is over rectangular groups;
- (3) μV is over completely simple semigroups;
- (4) μK is over cryptogroups.

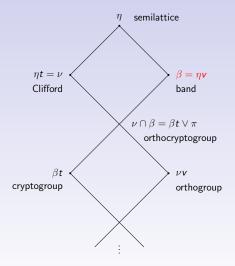
\mathcal{TV} -network of ε

Cryptogroup



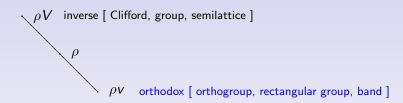
 $\mathcal{TV}\text{-max}$ network of ε

 $\mathcal{TV}\text{-network}$ of ε



 $\mathcal{TV}\text{-min}$ network of η

\mathcal{V} -classes of special congruences



orthogroup

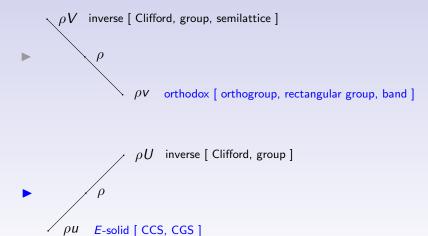
orthodox completely regular semigroup

rectangular group

orthodox completely simple semigroup;

equivalently, a direct product of a rectangular band and a group

5	orthodox	orthogroup	rectangular group	band	
\Leftrightarrow	$\varepsilon V = \gamma$	$\tau V = \nu$	$\varepsilon V = \sigma$	$\varepsilon V = \eta$	
$\iff \forall ho \in \mathcal{C}(S)$	$\rho V = \rho \lor \gamma$	$\rho V = \rho \lor \nu$	$\rho V = \rho \lor \sigma$	$\rho V = \rho \lor \eta$	
$\iff ho V$ is	inverse	Clifford	group	semilattice	
$\iff S$ is coex- tension of	inverse semigroup by rect- angular bands	Clifford semigroup by rect- angular bands	group by rect- angular bands		



S	E-solid	CCS	CGS	completely regular
$\iff \mathscr{U}^0$	inverse	Clifford	group	semilattice
$\iff \rho U$	inverse	Clifford	group	semilattice

E-solid

 $\mathcal{R}|_E \circ \mathcal{L}|_E = \mathcal{L}|_E \circ \mathcal{R}|_E$

CCS

coextensions of Clifford semigroups by completely simple semigroups

CGS

coextensions of groups by completely simple semigroups

- kernel-trace approach
- \mathcal{T} , \mathcal{K} -relation
- congruence networks
- operator semigroup

Four operators:

$$T : \lambda \mapsto \lambda T, \quad t : \lambda \mapsto \lambda t, \quad K : \lambda \mapsto \lambda K, \quad k : \lambda \mapsto \lambda k.$$

$$\Gamma = \{T, t, K, k\}$$

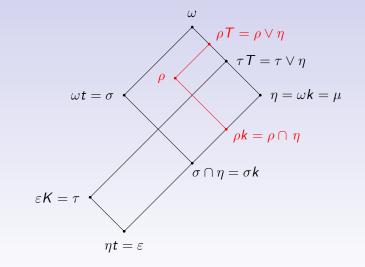
• \mathcal{TK} -network

 ρ , ρT , ρt , ρK , ρk , $\rho T K$, $\rho T k$, \cdots

- Γ^+ , \mathcal{TK} -operator semigroup [1992, Petrich]
 - ${\scriptstyle \bullet}\,$ relation ${\scriptstyle \Sigma}$ valid in all networks of congruences

•
$$\Gamma^+ / \Sigma^{\sharp}$$

\mathcal{TK} -operator semigroup for Clifford semigroups



 $\mathcal{TK}\text{-network}$ of ω

Lemma

Operators Γ satisfy the following relations Σ . (1) $K^2 = kK = K$, $k^2 = Kk = k$, $t^2 = Tt = t$, $T^2 = tT = T$; (2) KTK = TKT = TK, tkt = ktk = kt; (3) tKt = tK; (4) kT = Tk. TK-operator semigroup for Clifford semigroups [1992, Petrich]

Denote

$$\begin{split} \varepsilon &= kt, & \tau = ktK, & \tau \lor \eta = ktKT, & \eta = kT, \\ \omega &= TK, & \sigma = TKt, & \sigma \cap \eta = TKtk. \end{split}$$

Let

$$\Delta = \{\varepsilon, \, \sigma, \, \eta, \, \tau, \, \sigma \cap \eta, \, \tau \lor \eta, \, \omega\}.$$

Theorem

Let S be a Clifford semigroup. The set $\Omega = \{ K, KT, Kt, KtK, KtK, KtKT, k, t, tk, tK, tK, tK, tK, T \} \cup \Delta$ is a system of representatives for the congruence on Γ^+ generated by the relations Σ .

Theorem

The \mathcal{TK} -operator semigroup for Clifford semigroups is $\Gamma^+ / \Sigma^{\sharp}$.

- completely simple semigroup [1994, Petrich]
- cryptogroup [2000, Wang]
- bisimple ω -semigroup [2000, Wang]
- E-unitary completely regular semigroup [2001, Luo Wang]
- free monogenic inverse semigroup [2014, Long Wang]

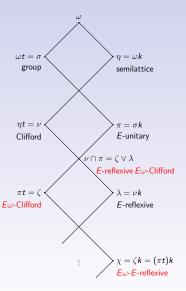
Review

congruence

$$\rho = \rho_{(\operatorname{tr} \rho, \operatorname{Ker} \rho)}$$

- $\mathcal{T}, \mathcal{K}, \mathcal{U}, \mathcal{V}$ $\rho \mathcal{T} \theta \iff \operatorname{tr} \rho = \operatorname{tr} \theta,$ $\rho \mathcal{K} \theta \iff \operatorname{Ker} \rho = \operatorname{Ker} \theta,$ $\rho \mathcal{U} \theta \iff \rho \cap \leq = \theta \cap \leq,$ $\mathcal{V} = \mathcal{U} \cap \mathcal{K}.$
- congruence network
- operator semigroup

$$\Gamma^+ / \Sigma^{\sharp}$$
, where $\Gamma = \{T, t, K, k\}$.



 $\mathcal{TK}\text{-min}$ network of ω